例如:"lncRNA", "apoptosis", "WRKY"

Cigarette smoke extract induces differential expression levels of beta-defensin peptides in human alveolar epithelial cells.

Tob Induc Dis. 2013 Apr 29;11(1):10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:The damaging effects of cigarette smoke on the lungs are well known in terms of cancer risks. Additional molecular changes within the lung tissue can also occur as a result of exposure to cigarette smoke. The human β-defensin (hBD) class of antimicrobial peptides is the focus of our research. In addition to antimicrobial activity, β-defensins also have immunomodulatory functions. Over 30 previously unrecognized β-defensin genes have recently been identified in the human genome, many with yet to be determined functions. We postulated that altered β-defensin production may play a role in the pathogenesis observed in the lungs of smokers. Our hypothesis is that cigarette smoke exposure will affect the expression of β-defensins in human lung alveolar epithelial cells (A549). METHODS:We exposed A549 cells to cigarette smoke extract (CSE) and measured the changes in mRNA levels of several antimicrobial peptides by quantitative real-time PCR, and directly observed peptide expression in cells by immunofluorescence (IF) microscopy. RESULTS:We found that hBD3, hBD5, and hBD9 gene expression was upregulated in A549 cells exposed to CSE. HBD1, hBD8, hBD18 and LL-37 gene expression did not significantly change upon exposure to CSE. Expression of hBD3 and hBD4 peptides was visualized by IF. CONCLUSIONS:This differential expression suggests that hBD3, hBD5, and hBD9 may play a role in the changes to the lung tissue observed in smokers. Establishing differential β-defensin expression following CSE treatment will add to our understanding of the molecular response of the lung alveolar epithelium to cigarette smoke exposure.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读