[No authors listed]
The MRN (MRE11-RAD50-NBS1) complex has been implicated in many aspects of the DNA damage response. It has key roles in sensing and processing DNA double-strand breaks, as well as in activation of ATM (ataxia telangiectasia mutated). We reveal a function for MRN in ATR (ATM- and RAD3-related) activation by using defined ATR-activating DNA structures in Xenopus egg extracts. Strikingly, we demonstrate that MRN is required for recruitment of TOPBP1 to an ATR-activating structure that contains a single-stranded DNA (ssDNA) and a double-stranded DNA (dsDNA) junction and that this recruitment is necessary for phosphorylation of CHK1. We also show that the 911 (RAD9-RAD1-HUS1) complex is not required for TOPBP1 recruitment but is essential for TOPBP1 function. Thus, whereas MRN is required for TOPBP1 recruitment at an ssDNA-to-dsDNA junction, 911 is required for TOPBP1 "activation." These findings provide molecular insights into how ATR is activated.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |