例如:"lncRNA", "apoptosis", "WRKY"

Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion.

New Phytol. 2013 Jul;199(2):505-19. doi:10.1111/nph.12255. Epub 2013 Apr 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The development of nematode feeding sites induced by root-knot nematodes involves the synchronized activation of cell cycle processes such as acytokinetic mitoses and DNA amplification. A number of key cell cycle genes are reported to be critical for nematode feeding site development. However, it remains unknown whether plant cyclin-dependent kinase (CDK) inhibitors such as the Arabidopsis interactor/inhibitor of CDK (ICK)/Kip-related protein (KRP) family are involved in nematode feeding site development. This study demonstrates the involvement of Arabidopsis ICK2/KRP2 and ICK1/KRP1 in the control of mitosis to endoreduplication in galls induced by the root-knot nematode Meloidogyne incognita. Using ICK/KRP promoter-GUS fusions and mRNA in situ hybridizations, we showed that ICK2/KRP2, ICK3/KRP5 and ICK4/KRP6 are expressed in galls after nematode infection. Loss-of-function mutants have minor effects on gall development and nematode reproduction. Conversely, overexpression of both ICK1/KRP1 and ICK2/KRP2 impaired mitosis in giant cells and blocked neighboring cell proliferation, resulting in a drastic reduction of gall size. Studying the dynamics of protein expression demonstrated that protein levels of ICK2/KRP2 are tightly regulated during giant cell development and reliant on the presence of the nematode. This work demonstrates that impeding cell cycle progression by means of ICK1/KRP1 and ICK2/KRP2 overexpression severely restricts gall development, leading to a marked limitation of root-knot nematode development and reduced numbers of offspring.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读