例如:"lncRNA", "apoptosis", "WRKY"

D-2-hydroxyglutarate metabolism is linked to photorespiration in the shm1-1 mutant.

Plant Biol (Stuttg). 2013 Jul;15(4):776-84. doi:10.1111/plb.12020. Epub 2013 Apr 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Arabidopsis mutant shm1-1 is defective in mitochondrial serine hydroxymethyltransferase 1 activity and displays a lethal photorespiratory phenotype at ambient CO2 concentration but grows normally at high CO2 . After transferring high CO2 -grown shm1-1 plants to ambient CO2 , the younger leaves remain photosynthetically active while developed leaves display increased yellowing and decreased FV /FM values. Metabolite analysis of plants transferred from high CO2 to ambient air indicates a massive light-dependent (photorespiratory) accumulation of glycine, 2-oxoglutarate (2OG) and D-2-hydroxyglutarate (D-2HG). Amino acid markers of senescence accumulated in ambient air in wild-type and shm1-1 plants maintained in darkness and also build up in shm1-1 in the light. This, together with an enhanced transcription of the senescence marker SAG12 in shm1-1, suggests the initiation of senescence in shm1-1 under photorespiratory conditions. Mitochondrial D-2HG dehydrogenase (D-2HGDH) converts D-2HG into 2OG. In vitro studies indicate that 2OG exerts competitive inhibition on D-2HGDH with a Ki of 1.96 mm. 2OG is therefore a suitable candidate as inhibitor of the in vivo D-2HGDH activity, as 2OG is produced and accumulates in mitochondria. Inhibition of the D-2HGDH by 2OG is likely a mechanism by which D-2HG accumulates in shm1-1, however it cannot be ruled out that D-2HG may also accumulate due to an active senescence programme that is initiated in these plants after transfer to photorespiratory conditions. Thus, a novel interaction of the photorespiratory pathway with cellular processes involving D-2HG has been identified.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读