例如:"lncRNA", "apoptosis", "WRKY"

West Nile virus and dengue virus capsid protein negates the antiviral activity of human Sec3 protein through the proteasome pathway.

Cell Microbiol. 2013 Oct;15(10):1688-706. doi:10.1111/cmi.12143. Epub 2013 Apr 18
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Flavivirus capsid (C) protein is a key structural component of virus particles. The non-structural role of C protein in the pathogenesis of arthropod-borne flaviviruses is not clearly deciphered. This study showed that West Nile virus (WNV) and dengue virus (DENV) utilized C protein to reduce human Sec3p (hSec3p) levels at post-transcriptional level through activation of chymotrypsin-like proteolytic function of 20S proteasome. Mutagenesis studies confirmed amino acids 14, 109-114 of WNV C protein and 13, 102-107 of DENV C protein played an important role in activating the proteolytic function of 20S proteasome. Amino acid residues at 14 (WNV) and 13 (DENV) of C protein were important for C protein-hSec3p binding and physical interaction between C protein and hSec3p was essential to execute hSec3p degradation. Degradation motif required to degrade hSec3p resided between amino acid residues 109-114 of WNV C protein and 102-107 of DENV C protein. Proteasomes, hSec3p binding motif and degradation motif on C protein must be intact for efficient flavivirus production. Clinical isolates of DENV showed more pronounced effect in manipulating the proteasomes and reducing hSec3p levels. This study portrayed the non-structural function of C protein that helped the flavivirus to nullify the antiviral activity of hSec3p by accelerating its degradation and facilitating efficient binding of elongation factor 1α with flaviviral RNA genome.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读