例如:"lncRNA", "apoptosis", "WRKY"

Metallothionein prevents diabetes-induced cardiac pathological changes, likely via the inhibition of succinyl-CoA:3-ketoacid coenzyme A transferase-1 nitration at Trp(374).

Am. J. Physiol. Endocrinol. Metab.2013 Apr 15;304(8):E826-35. Epub 2013 Feb 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We previously demonstrated that metallothionein (MT)-mediated protection from diabetes-induced pathological changes in cardiac tissues is related to suppression of superoxide generation and protein nitration. The present study investigated which diabetes-nitrated protein(s) mediate the development of these pathological changes by identifying the panel of nitrated proteins present in diabetic hearts of wild-type (WT) mice and not in those of cardiac-specific MT-overexpressing transgenic (MT-TG) mice. At 2, 4, 8, and 16 wk after streptozotocin induction of diabetes, histopathological examination of the WT and MT-TG diabetic hearts revealed cardiac structure derangement and remodeling, significantly increased superoxide generation, and 3-nitrotyrosine accumulation. A nitrated protein of 58 kDa, succinyl-CoA:3-ketoacid CoA transferase-1 (SCOT), was identified by mass spectrometry. Although total SCOT expression was not significantly different between the two types of mice, the diabetic WT hearts showed significantly increased nitration content and dramatically decreased catalyzing activity of SCOT. Although SCOT nitration sites were identified at Tyr(76), Tyr(117), Tyr(135), Tyr(226), Tyr(368), and Trp(374), only Tyr(76) and Trp(374) were found to be located in the active site by three-dimensional structure modeling. However, only Trp(374) showed a significantly different nitration level between the WT and MT-TG diabetic hearts. These results suggest that MT prevention of diabetes-induced pathological changes in cardiac tissues is most likely mediated by suppression of SCOT nitration at Trp(374).

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读