例如:"lncRNA", "apoptosis", "WRKY"

Identification of residues important for the catalysis, structure maintenance, and substrate specificity of yeast 3-hydroxyacyl-CoA dehydratase Phs1.

FEBS Lett.2013 Mar 18;587(6):804-9. Epub 2013 Feb 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Yeast Phs1 is a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. In the present study, we biochemically characterized Phs1 mutants with Ala-substitution at each of seven highly conserved amino-acid residues. All mutants exhibited reduced Phs1 activity. The E60A, Q79A, and R141A mutants were sensitive to digitonin, indicative of their reduced structural integrity. The fatty acid elongation cycle was greatly inhibited in the R83A, R141A, and G152A mutant membranes. The enzyme kinetics study implicated the direct involvement of the Arg83 and Gly152 residues in the catalytic process. The E60A mutation was found to affect the substrate specificity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读