例如:"lncRNA", "apoptosis", "WRKY"

WNK1 protein kinase regulates embryonic cardiovascular development through the OSR1 signaling cascade.

J Biol Chem. 2013 Mar 22;288(12):8566-8574. Epub 2013 Feb 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


WNK1 is a widely expressed serine/threonine protein kinase that regulates multiple cellular and organ functions via diverse mechanisms. We previously reported that endothelial-specific deletion of Wnk1 in mice results in embryonic lethality, with angiogenesis and cardiac defects beginning at embryonic day ∼10.5. Here, we further investigated the signaling mechanism by which WNK1 regulates embryonic cardiovascular development. We found that mice with a global deletion of Osr1, which encodes oxidative stress-responsive kinase-1, a protein kinase activated by WNK1, died in utero beginning at embryonic day ∼11. The defects in Osr1-null yolk sacs and embryos were virtually identical to those observed in Wnk1-knock-out mice: no mature large vessels in yolk sacs, defective angiogenesis in the brain and intersomitic vessels, and smaller chambers and reduced myocardial trabeculation in mutant hearts. Endothelial-specific deletion of Osr1 generated by crossing Osr1(flox/flox) mice with Tie2-Cre mice phenocopied defects caused by global Osr1 deletion. To investigate whether OSR1 acts downstream of WNK1 in embryonic angiogenesis, we generated a mouse line that carries a catalytically and constitutively active human OSR1 transgene in the locus under the control of a cassette of floxed transcription stop codons. We found that endothelial-specific expression of the constitutively active mutant OSR1, generated by Tie2-Cre-mediated excision of floxed stop codons in the mutated duanyu1670A26 locus, rescued angiogenesis and cardiac defects in global Wnk1-null embryos. These results indicate that WNK1 activation of the OSR1 signaling cascade is an essential pathway that regulates angiogenesis and cardiac formation during mouse embryo development.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读