例如:"lncRNA", "apoptosis", "WRKY"

Endoplasmic reticulum lectin XTP3-B inhibits endoplasmic reticulum-associated degradation of a misfolded α1-antitrypsin variant.

FEBS J. 2013 Mar;280(6):1563-75. doi:10.1111/febs.12157. Epub 2013 Feb 28
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The endoplasmic reticulum (ER) is an organelle that synthesizes many secretory and membrane proteins. However, proteins often fold incorrectly. Terminally misfolded polypeptides in the ER are retro-translocated to the cytosol, where they are ultimately degraded by the ubiquitin-proteasome system, a process termed ER-associated degradation (ERAD). By recognizing the specific structures of N-linked oligosaccharides attached to polypeptides, lectins play an important role in the quality control of glycoproteins in the ER. Mammalian OS-9 and XTP3-B are ER-resident lectins that contain mannose 6-phosphate receptor homology (MRH) domains, which recognize sugar moieties; OS-9 has one MRH domain and XTP3-B has two. Both are involved in ERAD, but the functional differences between the two are poorly understood. The present study analyzed the function of human XTP3-B, and found, by frontal affinity chromatography analysis, that its C-terminal MRH domain specifically recognized the Man9 GlcNAc2 (M9) glycan in vitro and M9 glycans on an ERAD substrate NHK, a terminally misfolded α1-antitrypsin variant, in vivo. Furthermore, endogenous XTP3-B was a component of the HRD1-SEL1L membrane-embedded ubiquitin ligase complex, an association that was stabilized by a direct interaction with SEL1L. The lectin activity of XTP3-B was required for its binding to NHK, but not for its association with SEL1L. Unlike OS-9, XTP3-B did not enhance the degradation of misfolded glycoproteins, but instead inhibited the degradation of NHK bearing M9 oligosaccharides. Therefore, we propose that XTP3-B recognizes M9 glycans on unfolded polypeptides, thereby acting as a negative regulator of ERAD, and also protects newly synthesized immature polypeptides from premature degradation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读