例如:"lncRNA", "apoptosis", "WRKY"

KRC-408, a novel c-Met inhibitor, suppresses cell proliferation and angiogenesis of gastric cancer.

Cancer Lett.2013 May 10;332(1):74-82. Epub 2013 Jan 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Among many cancer therapeutic targets, c-Met receptor tyrosine kinase has recently given particular attention. This kinase and its ligand, hepatocyte growth factor (HGF), play a central role in cell proliferation and the survival of several human cancers. Thus, we developed KRC-408 as a novel c-Met inhibitor and investigated its anti-cancer effects on human gastric cancer. KRC-408 inhibited the phosphorylation of c-Met and its constitutive downstream effectors such as phosphatidylinositol 3-kinase (PI3K), Akt, Mek, and Erk. This compound was found to exert anti-cancer effects stronger than those of 5-fluorouracil (5-FU) on gastric cancer cells, especially cell lines that overexpressed c-Met. Interestingly, cytotoxicity of KRC-408 was lower than that of 5-FU in normal gastric cells. Apoptosis induced by KRC-408 was accompanied by increased levels of cleaved caspase-3 and as well as DNA condensation and fragmentation. Flow cytometry analysis showed an accumulation of gastric cancer cells in the G2/M phase with concomitant loss of cells in the S phase following treatment with this drug. In the angiogenesis studies, KRC-408 inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs), and suppressed microvessel sprouting from rat aortic rings ex vivo along with blood vessel formation in a Matrigel plug assay in mice. Results of an in vivo mouse xenograft experiment showed that the administration of KRC-408 significantly delayed tumor growth in a dose-dependent manner, and suppressed Akt and Erk phosphorylation as well CD34 expression in tumor tissues. These findings indicate that KCR-408 may exert anti-tumor effects by directly affecting tumor cell growth or survival via the c-Met receptor tyrosine kinase pathway. We therefore suggest that KRC-408 is a novel therapeutic candidate effective against gastric cancers that overexpress c-Met.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读