例如:"lncRNA", "apoptosis", "WRKY"

ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2.

Development. 2013 Feb;140(4):770-9. Epub 2013 Jan 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Seed production in angiosperms requires tight coordination of the development of the embryo and the endosperm. The endosperm-specific transcription factor ZHOUPI has previously been shown to play a key role in this process, by regulating both endosperm breakdown and the formation of the embryonic cuticle. To what extent these processes are functionally linked is, however, unclear. In order to address this issue we have concentrated on the subtilisin-like serine protease encoding gene ABNORMAL LEAF-SHAPE1. Expression of ABNORMAL LEAF-SHAPE1 is endosperm specific, and dramatically decreased in zhoupi mutants. We show that, although ABNORMAL LEAF-SHAPE1 is required for normal embryonic cuticle formation, it plays no role in regulating endosperm breakdown. Furthermore, we show that re-introducing ABNORMAL LEAF-SHAPE1 expression in the endosperm of zhoupi mutants partially rescues embryonic cuticle formation without rescuing their persistent endosperm phenotype. Thus, we conclude that ALE1 can normalize cuticle formation in the absence of endosperm breakdown, and that ZHOUPI thus controls two genetically separable developmental processes. Finally, our genetic study shows that ZHOUPI and ABNORMAL LEAF-SHAPE1 promotes formation of embryonic cuticle via a pathway involving embryonically expressed receptor kinases GASSHO1 and GASSHO2. We therefore provide a molecular framework of inter-tissue communication for embryo-specific cuticle formation during embryogenesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读