[No authors listed]
Antimicrobial peptides (AMPs) play important roles in innate immunity. One such AMP, epinecidin-1, exhibits antibacterial effects in zebrafish. In the current study, we aimed to identify the antimicrobial-associated proteins affected by epinecidin-1 treatment, and to unravel the underlying antimicrobial molecular mechanisms of epinecidin-1. We analyzed proteome changes in epinecidin-1-treated zebrafish using two-dimensional electrophoresis (2DE) coupled to mass spectrometry. Several differentially expressed proteins were identified, some of which were validated by real-time quantitative RT-PCR. The differentially expressed proteins were mapped onto Ingenuity Pathway Analysis canonical pathways, to construct a possible protein-protein interacting network regulated by epinecidin-1; this network suggested a potential role of epinecindin-1 in cytoskeletal assembly and organization. Our findings imply that epinecidin-1 may stabilize the cytoskeleton network in host cells, thereby promoting resistance to bacterial infection.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |