例如:"lncRNA", "apoptosis", "WRKY"

Complex modulation of Ca(v)3.1 T-type calcium channel by nickel.

Cell. Mol. Life Sci.2013 May;70(9):1653-61. doi:10.1007/s00018-012-1225-9. Epub 2012 Dec 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni(2+)-binding site with critical histidine-191 (H191) within the extracellular IS3-IS4 domain of the most Ni(2+)-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni(2+) effect and its dependence on PDC remain uncertain. Here we compared Ni(2+) action on the wild-type "Ni(2+)-insensitive" Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni(2+) blockade of Ca(2+), Sr(2+), or Ba(2+) currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni(2+) conformed to two sites binding. Ni(2+) binding with high-affinity site (IC50 = 0.03-3 μM depending on PDC) produced maximal inhibition of 20-30% and was voltage-dependent, consistent with its location within the channel's pore. Most of the inhibition (70-80%) was produced by Ni(2+) binding with low-affinity site (IC50 = 240-700 μM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120-160 μM). The IC50 of Ni(2+) binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca(2+), Sr(2+), or Ba(2+) with Ni(2+). We conclude that differential Ni(2+)-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni(2+), may be occupied by PDC, influencing in turn the channel's permeation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读