例如:"lncRNA", "apoptosis", "WRKY"

Deregulation of poly(A) polymerase I in Escherichia coli inhibits protein synthesis and leads to cell death.

Nucleic Acids Res.2013 Feb 1;41(3):1757-66. Epub 2012 Dec 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Polyadenylation plays important roles in RNA metabolism in both prokaryotes and eukaryotes. Surprisingly, deregulation of polyadenylation by poly(A) polymerase I (PAP I) in Escherichia coli leads to toxicity and cell death. We show here that mature tRNAs, which are normally not substrates for PAP I in wild-type cells, are rapidly polyadenylated as PAP I levels increase, leading to dramatic reductions in the fraction of aminoacylated tRNAs, cessation of protein synthesis and cell death. The toxicity associated with PAP I is exacerbated by the absence of either RNase T and/or RNase PH, the two major 3' → 5' exonucleases involved in the final step of tRNA 3'-end maturation, confirming their role in the regulation of tRNA polyadenylation. Furthermore, our data demonstrate that regulation of PAP I is critical not for preventing the decay of mRNAs, but rather for maintaining normal levels of functional tRNAs and protein synthesis in E. coli, a function for polyadenylation that has not been observed previously in any organism.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读