例如:"lncRNA", "apoptosis", "WRKY"

Activin-β(c) reduces reproductive tumour progression and abolishes cancer-associated cachexia in inhibin-deficient mice.

J. Pathol.2013 Mar;229(4):599-607. doi:10.1002/path.4142. Epub 2013 Jan 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Activins are involved in the regulation of a diverse range of physiological processes including development, reproduction, and fertility, and have been implicated in the progression of cancers. Bioactivity is regulated by the inhibin α-subunit and by an activin-binding protein, follistatin. The activin-β(C) subunit was not considered functionally significant in this regard due to an absence of phenotype in knockout mice. However, activin-β(C) forms heterodimers with activin-β(A) and activin-C antagonizes activin-A in vitro. Thus, it is proposed that overexpression, rather than loss of activin-β(C) , regulates activin-A bioactivity. In order to prove biological efficacy, inhibin α-subunit knockout mice (α-KO) were crossed with mice overexpressing activin-β(C) (ActC++). Deletion of inhibin leads to Sertoli and granulosa cell tumours, increased activin-A, and cancer-associated cachexia. Therefore, cachexia and reproductive tumour development should be modulated in α-KO/ActC++ mice, where excessive activin-A is the underlying cause. Accordingly, a reduction in activin-A, no significant weight loss, and reduced incidence of reproductive tumours were evident in α-KO/ActC++ mice. Overexpression of activin-β(C) antagonized the activin signalling cascade; thus, the tumourigenic effects of activin-A were abrogated. This study provides proof of the biological relevance of activin-β(C) . Being a regulator of activin-A, it is able to abolish cachexia and modulate reproductive tumour development in α-KO mice.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读