例如:"lncRNA", "apoptosis", "WRKY"

Mitosis-specific regulation of nuclear transport by the spindle assembly checkpoint protein Mad1p.

Mol. Cell. 2013 Jan 10;49(1):109-20. Epub 2012 Nov 21
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nuclear pore complexes (NPCs) and kinetochores perform distinct tasks, yet their shared ability to bind several proteins suggests their functions are intertwined. Among these shared proteins is Mad1p, a component of the yeast spindle assembly checkpoint (SAC). Here we describe a role for Mad1p in regulating nuclear import that employs its ability to sense a disruption of kinetochore-microtubule interactions during mitosis. We show that kinetochore-microtubule detachment arrests nuclear import mediated by the transport factor Kap121p through a mechanism that requires Mad1p cycling between unattached, metaphase kinetochores and binding sites at the NPC. This signaling pathway requires the Aurora B-like kinase Ipl1p, and the resulting transport changes inhibit the nuclear import of Glc7p, a phosphatase that acts as an Ipl1p antagonist. We propose that a distinct branch of the SAC exists in which Mad1p senses unattached kinetochores and, by altering NPC transport activity, regulates the nuclear environment of the spindle.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读