[No authors listed]
How does chronic activity modulation lead to global remodeling of proteins at synapses and synaptic scaling? Here we report that guanylate kinase-associated protein (GKAP; also known as SAPAP), a scaffolding molecule linking NMDA receptor-PSD-95 to Shank-Homer complexes, acts in these processes. Overexcitation removes GKAP from synapses via the ubiquitin-proteasome system, whereas inactivity induces synaptic accumulation of GKAP in rat hippocampal neurons. Bidirectional changes in synaptic GKAP amounts are controlled by specific CaMKII isoforms coupled to different Ca(2+) channels. CaMKIIα activated by the NMDA receptor phosphorylates GKAP Ser54 to induce polyubiquitination of GKAP. In contrast, CaMKIIβ activation via L-type voltage-dependent calcium channels promotes GKAP recruitment by phosphorylating GKAP Ser340 and Ser384, which uncouples GKAP from myosin Va motor complex. Overexpressing GKAP turnover mutants not only hampers activity-dependent remodeling of PSD-95 and Shank but also blocks bidirectional synaptic scaling. Therefore, activity-dependent turnover of PSD proteins orchestrated by GKAP is critical for homeostatic plasticity.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |