CD8(+) T cells are critical for the control of various intracellular infections and cancers. To date, however, effective T cell-based vaccines remain elusive, due, in part, to the lack of in vivo models that facilitate the dissection of antigen-specific CD8(+) T-cell responses primed by different antigen-presenting cells (APCs). In this study, we generated four lines of H-2K(d) transgenic (K(d) Tg) mice that differed in their expression of H-2K(d): dendritic cells (DCs) only (CD11c-K(d)), macrophages only (huCD68-K(d)), hepatocytes only (Alb-K(d)), or all nucleated cells (major histocompatibility complex-I-K(d)). Immunization of each of these K(d) Tg mouse strains with a synthetic peptide or a recombinant adenovirus expressing a well-known immunodominant, H-2K(d)-restricted CD8(+) T-cell epitope, SYVPSAEQI, which was derived from the circumsporozoite protein of Plasmodium yoelii, promoted distinct SYVPSAEQI-specific CD8(+) T-cell responses. The route of immunization also greatly influenced the magnitude of the epitope-specific CD8(+) T-cell response. These tissue-specific K(d) Tg mice may be valuable tools for determining the mode of induction of CD8(+) T-cell responses by different APCs in vivo and for characterizing the CD8(+) T-cell responses promoted in response to various microbial infections and/or different types of vaccines.