[No authors listed]
The synchronization of intraerythrocytic maturation of Plasmodium parasites is an important factor in the malaria infection process. Synchronization is mediated by inositol phosphate (InsP(x))-induced Ca(2+)-release from internal stores. To further investigate the InsP(x) metabolism in these parasites a Plasmodium protein possessing inositol phosphate kinase (IPK) activity was recombinantly expressed, purified and enzymatically characterized for the first time. Its main activity is the conversion of the Ca(2+)-releasing second messenger Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4), an important factor in chromatin remodeling and also in Ca(2+)-release. This protein possesses several additional IPK activities pointing to a potential role as inositol phosphate multikinase. Interestingly, we have also identified three putative subdomains of histone deacetylase in this protein possibly linking InsP(x)- and acetylation-mediated transcription regulation. Furthermore, we examined the inhibitory potential of >40 polyphenolic substances against its kinase activity. Because of the important role of InsP(x)-induced Ca(2+)-release in the development of Plasmodium parasites, IPKs are interesting targets for novel antimalarial approaches.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |