例如:"lncRNA", "apoptosis", "WRKY"

Post-translational modification in the archaea: structural characterization of multi-enzyme complex lipoylation.

Biochem. J.2013 Jan 15;449(2):415-25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Lipoylation, the covalent attachment of lipoic acid to 2-oxoacid dehydrogenase multi-enzyme complexes, is essential for metabolism in aerobic bacteria and eukarya. In Escherichia coli, lipoylation is catalysed by LplA (lipoate protein ligase) or by LipA (lipoic acid synthetase) and LipB [lipoyl(octanoyl) transferase] combined. Whereas bacterial and eukaryotic LplAs comprise a single two-domain protein, archaeal LplA function typically involves two proteins, LplA-N and LplA-C. In the thermophilic archaeon Thermoplasma acidophilum, LplA-N and LplA-C are encoded by overlapping genes in inverted orientation (lpla-c is upstream of lpla-n). The T. acidophilum LplA-N structure is known, but the LplA-C structure is unknown and LplA-C's role in lipoylation is unclear. In the present study, we have determined the structures of the substrate-free LplA-N-LplA-C complex and E2lipD (dihydrolipoyl acyltransferase lipoyl domain) that is lipoylated by LplA-N-LplA-C, and carried out biochemical analyses of this archaeal lipoylation system. Our data reveal the following: (i) LplA-C is disordered but folds upon association with LplA-N; (ii) LplA-C induces a conformational change in LplA-N involving substantial shortening of a loop that could repress catalytic activity of isolated LplA-N; (iii) the adenylate-binding region of LplA-N-LplA-C includes two helices rather than the purely loop structure of varying order observed in other LplA structures; (iv) LplAN-LplA-C and E2lipD do not interact in the absence of substrate; (v) LplA-N-LplA-C undergoes a conformational change (the details of which are currently undetermined) during lipoylation; and (vi) LplA-N-LplA-C can utilize octanoic acid as well as lipoic acid as substrate. The elucidated functional inter-dependence of LplA-N and LplA-C is consistent with their evolutionary co-retention in archaeal genomes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读