例如:"lncRNA", "apoptosis", "WRKY"

DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges.

PLoS One. 2012;7(10):e47471. Epub 2012 Oct 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitu-tion technique. The effects of the Ca²⁺, ATP, phos-phate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were com-pared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower T(HC) (high Ca²⁺ ten-sion at pCa 4.66) (E40K: 1.21±0.06 T(a), ±SEM, N = 34; E54K: 1.24±0.07 T(a), N = 28), a significantly lower T(LC) (low- Ca²⁺ tension at pCa 7.0) (E40K: 0.07±0.02 T(a), N = 34; E54K: 0.06±0.02 T(a), N = 28), and a significantly lower T(act) (Ca²⁺ activatable tension) (T(act) = T(HC)-T(LC,) E40K: 1.15±0.08 T(a), N = 34; E54K: 1.18±0.06 T(a), N = 28) than WT (T(HC) = 1.53±0.07 T(a), T(LC) = 0.12±0.01 T(a), T(act) = 1.40±0.07 T(a), N = 25). All tensions were normalized to T(a) ( = 13.9±0.8 kPa, N = 57), the ten-sion of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca²⁺ sensitivity (pCa₅₀) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooper-a-tivity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读