例如:"lncRNA", "apoptosis", "WRKY"

Cytoprotective regulation of the mitochondrial permeability transition pore is impaired in type 2 diabetic Goto-Kakizaki rat hearts.

J. Mol. Cell. Cardiol.2012 Dec;53(6):870-9. Epub 2012 Oct 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Our recent studies indicated that up-regulation of calcineurin activity and unfolded protein responses (UPRs) disrupt cytoprotective Akt- and ERK-signaling in OLETF, a model of obese type 2 diabetes (T2DM). To determine whether the mechanisms can be generalized, we used Goto-Kakizaki rats (GK), a model of non-obese T2DM, in this study. Infarct sizes after 20-min ischemia/2-h reperfusion were similar in GK and non-diabetic controls, Wistar rats (Wistar). However, erythropoietin (EPO) limited infarct size in Wistar (64.0±5.3% vs. 45.7±4.4%, p<0.05) but not in GK (56.2±2.2% vs. 52.6±2.3%). Levels of calcineurin activity and EPO-induced phosphorylation of Akt and ERK were similar in GK and Wistar, though cytosolic HSP70 level was 50% lower and mitochondrial HSP60 level was 60% higher in GK. EPO preserved mitochondrial calcium retention capacity (CRC), an index of the threshold for opening of the mitochondrial permeability transition pore (mPTP), after ischemia/reperfusion in Wistar but not in GK. Interaction of cyclophilin D (CypD) with mitochondrial inorganic phosphate carrier (PiC), which sensitizes the mPTP, was enhanced in GK. There was a negative exponential relationship between CypD-PiC interaction and CRC upon reperfusion, indicating that increase in CRC by reduction of CypD-PiC interaction is smaller when CypD-PiC interaction level is at a higher range. A chemical chaperone, 4-phenylbutyric acid, attenuated the changes in HSPs and CypD-PiC interaction and restored responses of CRC and infarct size to EPO in GK. These results suggest that cytoprotective regulation of the mPTP is impaired in GK by enhanced CypD-PiC interaction in which UPRs are involved.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读