例如:"lncRNA", "apoptosis", "WRKY"

Analysis of candidate colitis genes in the Gdac1 locus of mice deficient in glutathione peroxidase-1 and -2.

PLoS One. 2012;7(9):e44262. Epub 2012 Sep 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Mice that are deficient for glutathione peroxidases 1 and 2 (GPX) show large variations in the penetrance and severity of colitis in C57BL/6J and 129S1/SvImJ backgrounds. We mapped a locus contributing to this difference to distal chromosome 2 (∼119-133 mbp) and named it glutathione peroxidase-deficiency-associated colitis 1 (Gdac1). The aim of this study was to identify the best gene candidates within the Gdac1 locus contributing to the murine colitis phenotype. METHOD/PRINCIPAL FINDINGS:We refined the boundaries of Gdac1 to 118-125 mbp (95% confidence interval) by increasing sample size and marker density across the interval. The narrowed region contains 128 well-annotated protein coding genes but it excludes Fermt1, a human inflammatory bowel disease candidate that was within the original boundaries of Gdac1. The locus we identified may be the Cdcs3 locus mapped by others studying IL10-knockout mice. Using in silico analysis of the 128 genes, based on published colon expression data, the relevance of pathways to colitis, gene mutations, presence of non-synonymous-single-nucleotide polymorphisms (nsSNPs) and whether the nsSNPs are predicted to have an impact on protein function or expression, we excluded 42 genes. Based on a similar analysis, twenty-five genes from the remaining 86 genes were analyzed for expression-quantitative-trait loci, and another 15 genes were excluded. CONCLUSION/SIGNIFICANCE:Among the remaining 10 genes, we identified Pla2g4f and Duox2 as the most likely colitis gene candidates, because GPX metabolizes PLA2G4F and DUOX2 products. Pla2g4f is a phospholipase A2 that has three potentially significant nsSNP variants and showed expression differences across mouse strains. PLA2G4F produces arachidonic acid, which is a substrate for lipoxygenases and, in turn, for GPXs. DUOX2 produces H(2)O(2) and may control microbial populations. DUOX-1 and -2 control microbial populations in mammalian lung and in the gut of several insects and zebrafish. Dysbiosis is a phenotype that differentiates 129S1/SvImJ from C57BL/6J and may be due to strain differences in DUOX2 activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读