例如:"lncRNA", "apoptosis", "WRKY"

Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence.

J. Virol.2012 Oct;86(19):10766-75. Epub 2012 Jul 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Nipah virus (NiV) is a highly pathogenic, negative-strand RNA paramyxovirus that has recently emerged from flying foxes to cause serious human disease. We have analyzed the role of the nonstructural NiV C protein in viral immunopathogenesis using recombinant virus lacking the expression of NiV C (NiVΔC). While wild-type NiV was highly pathogenic in the hamster animal model, NiVΔC was strongly attenuated. Replication of NiVΔC was followed by the production of NiV-specific antibodies and associated with higher recruitment of inflammatory cells and less intensive histopathological lesions in different organs than in wild-type-NiV-infected animals. To analyze the molecular basis of NiVΔC attenuation, we studied early changes in gene expression in infected primary human endothelial cells, a major cellular target of NiV infection. The transcriptomic approach revealed the striking difference between wild-type and mutant NiV in the expression of genes involved in immunity, with the particularly interesting differential patterns of proinflammatory cytokines. Compared to wild-type virus, NiVΔC induced increased expression of interleukin 1 beta (IL-1β), IL-8, CXCL2, CXCL3, CXCL6, CCL20, and beta interferon. Furthermore, the expression of NiV C in stably transfected cells decreased the production of the same panel of cytokines, revealing a role of the C protein in the regulation of cytokine balance. Together, these results suggest that NiV C regulates expression of proinflammatory cytokines, therefore providing a signal responsible for the coordination of leukocyte recruitment and the chemokine-induced immune response and controlling the lethal outcome of the infection.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读