例如:"lncRNA", "apoptosis", "WRKY"

High-grade glioma motility reduced by genetic knockdown of KCC3.

Cell. Physiol. Biochem.2012;30(2):466-76. Epub 2012 Jul 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cell motility is dependent on a coordinated reorganization of the cytoskeleton, membrane recycling, and focal adhesion to the extracellular matrix. Each of these cellular processes involves re-distribution of cell water, which is facilitated by the transport of inorganic ions (with obligatory water movement). Scratch-wound healing assays of Wistar C6 glioblastoma cells demonstrated cell motility in advance of cell proliferation. Although bumetanide inhibition of Na-K-2Cl cotransport activity did not affect cell motility, treatment of glioma cells with furosemide to inhibit K-Cl cotransport activity prevented ~75% of wound closure in a reversible reaction. Genetic silencing of KCC3 with short hairpin interfering RNA reduced protein expression by 40 - 60%, K(+) influx by ~50%, and cell motility by ~50%. Appearance of KCC1 mRNA and KCC3 mRNA at 25 PCR cycles versus KCC4 mRNA at 35 PCR cycles, suggests more KCC1/KCC3 expression in both primary rat astrocytes and C6 glioma cells. Altogether, these experiments suggest that the presence/function of multiple isoforms of the Na(+-)independent K-Cl cotransporter may have a role in glioma cell motility.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读