例如:"lncRNA", "apoptosis", "WRKY"

BLADE-ON-PETIOLE1 and 2 regulate Arabidopsis inflorescence architecture in conjunction with homeobox genes KNAT6 and ATH1.

Plant Signal Behav. 2012 Jul;7(7):788-92. Epub 2012 Jul 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Inflorescence architecture varies widely among flowering plants, serving to optimize the display of flowers for reproductive success. In Arabidopsis thaliana, internode elongation begins at the floral transition, generating a regular spiral arrangement of upwardly-oriented flowers on the primary stem. Post-elongation, differentiation of lignified interfascicular fibers in the stem provides mechanical support. Correct inflorescence patterning requires two interacting homeodomain transcription factors: the KNOTTED1-like protein BREVIPEDICELLUS (BP) and its BEL1-like interaction partner PENNYWISE (PNY). Mutations in BP and PNY cause short internodes, irregular spacing and/or orientation of lateral organs, and altered lignin deposition in stems. Recently, we showed that these defects are caused by the misexpression of lateral organ boundary genes, BLADE-ON-PETIOLE1 (BOP1) and BOP2, which function downstream of BP-PNY in an antagonistic fashion. BOP1/2 gain-of-function in stems promotes expression of the boundary gene KNOTTED1-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) and shown here, ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1), providing KNAT6 with a BEL1-like co-factor. Our further analyses show that defects caused by BOP1/2 gain-of-function require both KNAT6 and ATH1. These data reveal how BOP1/2-dependent activation of a boundary module in stems exerts changes in inflorescence architecture.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读