[No authors listed]
We investigated the mechanism of selenium (Se) tolerance using an Arabidopsis thaliana knockout mutant of a sulfate transporter, sultr1;2. Se stress inhibited plant growth, decreased chlorophyll contents, and increased protein oxidation and lipid peroxidation in the wild type, whereas the sultr1;2 mutation mitigated damage of these forms, indicating that sultr1;2 is more tolerant of Se than the wild type is. The accumulation of symplastic Se was suppressed in sultr1;2 as compared to the wild type, and the chemical speciation of Se in the mutant was different from that in the wild type. Regardless of Se stress, the activities of ascorbate peroxidase, catalase, and peroxidase in the mutant were higher than in the wild type, while the activity of superoxide dismutase in the mutant was the same as in the wild type. These results suggest that the sultr1;2 mutation confers Se tolerance on Arabidopsis by decreasing symplastic Se and maintaining antioxidant enzyme activities.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |