例如:"lncRNA", "apoptosis", "WRKY"

Phospholipase C-δ(1) regulates interleukin-1β and tumor necrosis factor-α mRNA expression.

Exp. Cell Res.2012 Oct 1;318(16):1987-93. Epub 2012 Jun 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Phospholipase C-δ(1) (PLCδ(1)) is a widely expressed highly active PLC isoform, modulated by Ca(2+) that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLCδ(1) modulated expression of the pro-inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLCδ(1) was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLCδ(1) knockdown enhanced expression IL-1β and tumor necrosis factor-α (TNF-α) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLCδ(1) knock down caused persistently high Nfκb levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLCδ(1) knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1β and TNF-α mRNA's induced by PLCδ(1) knockdown. Our results show that loss of PLCδ(1) enhances signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nfκb pathway. Our findings are consistent with the idea that PLCδ(1) is a suppressor of activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读