例如:"lncRNA", "apoptosis", "WRKY"

Protein kinase C (PKC) activity regulates functional effects of Kvβ1.3 subunit on KV1.5 channels: identification of a cardiac Kv1.5 channelosome.

J Biol Chem. 2012 Jun 15;287(25):21416-28. Epub 2012 Apr 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


K(v)1.5 channels are the primary channels contributing to the ultrarapid outward potassium current (I(Kur)). The regulatory K(v)β1.3 subunit converts K(v)1.5 channels from delayed rectifiers with a modest degree of slow inactivation to channels with both fast and slow inactivation components. Previous studies have shown that inhibition of with calphostin C abolishes the fast inactivation induced by K(v)β1.3. In this study, we investigated the mechanisms underlying this phenomenon using electrophysiological, biochemical, and confocal microscopy approaches. To achieve this, we used HEK293 cells (which lack K(v)β subunits) transiently cotransfected with K(v)1.5+K(v)β1.3 and also rat ventricular and atrial tissue to study native α-β subunit interactions. Immunocytochemistry assays demonstrated that these channel subunits colocalize in control conditions and after calphostin C treatment. Moreover, coimmunoprecipitation studies showed that K(v)1.5 and K(v)β1.3 remain associated after duanyu1531 inhibition. After knocking down all duanyu1531 isoforms by siRNA or inhibiting duanyu1531 with calphostin C, K(v)β1.3-induced fast inactivation at +60 mV was abolished. However, depolarization to +100 mV revealed K(v)β1.3-induced inactivation, indicating that duanyu1531 inhibition causes a dramatic positive shift of the inactivation curve. Our results demonstrate that calphostin C-mediated abolishment of fast inactivation is not due to the dissociation of K(v)1.5 and K(v)β1.3. Finally, immunoprecipitation and immunocytochemistry experiments revealed an association between K(v)1.5, K(v)β1.3, the receptor for activated C kinase (RACK1), and in HEK293 cells. A very similar K(v)1.5 channelosome was found in rat ventricular tissue but not in atrial tissue.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读