例如:"lncRNA", "apoptosis", "WRKY"

Tripartite motif-containing protein 38 negatively regulates TLR3/4- and RIG-I-mediated IFN-β production and antiviral response by targeting NAP1.

J. Immunol.2012 Jun 01;188(11):5311-8. Epub 2012 Apr 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Recognition of RNA virus through TLR and RIG-I-like receptor results in rapid expression of type I IFNs, which play an essential role in host antiviral responses. However, the mechanisms to terminate the production of type I IFNs are not well defined. In the current study, we identified a member of the tripartite motif (TRIM) family, TRIM38, as a negative regulator in TLR3/4- and RIG-I-mediated IFN-β signaling. Knockdown of TRIM38 expression by small interfering RNA resulted in augmented activation of IFN regulatory factor 3 and enhanced expression of IFN-β, whereas overexpression of TRIM38 had opposite effects. Coimmunoprecipitation and colocalization experiments demonstrated that TRIM38 interacted with NF-κB-activating kinase-associated protein 1 (NAP1), which is required for TLR-induced IFN regulatory factor 3 activation and IFN-β production. As an E3 ligase, TRIM38 promoted K48-linked polyubiquitination and proteasomal degradation of NAP1. Thus, knockdown of TRIM38 expression resulted in higher protein level of NAP1 in primary macrophages. Consistent with the inhibitory roles in TLR3/4- and RIG-I-mediated IFN-β signaling, knockdown of TRIM38 significantly inhibited the replication of vesicular stomatitis virus. Overexpression of TRIM38 resulted in enhanced replication of vesicular stomatitis virus. Therefore, our results demonstrate that TRIM38 is a negative regulator for TLR and RIG-I-mediated IFN-β production by targeting NAP1 for ubiquitination and subsequent proteasome-mediated degradation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读