例如:"lncRNA", "apoptosis", "WRKY"

Bovine large luteal cells show increasing de novo DNA methylation of the main ovarian CYP19A1 promoter P2.

Gen. Comp. Endocrinol.2012 Aug 1;178(1):37-45. Epub 2012 Apr 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Transformation of the estrogen producing large dominant follicle into a functional progesterone producing corpus luteum involves profound and well-orchestrated changes in cell type-specific gene expression profiles, possibly involving epigenetic mechanisms of gene silencing. As an experimental paradigm to examine the involvement of de novo DNA methylation in the process of luteinization, the transcript abundance and promoter-specific DNA methylation levels of CYP19A1, which encodes the key enzyme for estrogen biosynthesis, were analyzed in enzymatically dispersed and purified large granulosa luteal cells of early- to mid-cycle bovine corpora lutea. To characterize the morphology and physiology of isolated corpora lutea, their weights and the respective plasma progesterone levels were analyzed. Transcript abundance of CYP19A1, HSD3B1, GHR, and of LHGCR was quantified by real-time PCR. Methylation levels were analyzed by bisulfite direct sequencing. The data indicated that corpora lutea weights and plasma progesterone levels significantly increased during the early luteal phase (days 3-6 of the cycle). The growth of small and large luteal cells was particularly pronounced between days 3 and 4. Large luteal cells are characterized by high HSD3B1 and GHR, but low LHCGR transcript abundance, whereas CYP19A1 expression was very low or undetectable. The DNA methylation levels of the main ovarian CYP19A1 promoter P2 significantly increased from day 5. In conclusion, the data indicated de novo DNA methylation approximately five days after the luteinizing hormone-induced down-regulation of CYP19A1 expression, suggesting that DNA methylation during the early luteal phase might play a role for permanent silencing of previously down-regulated genes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读