例如:"lncRNA", "apoptosis", "WRKY"

A point mutant of apolipoprotein A-I (V156K) showed enhancement of cellular insulin secretion and potent activity of facultative regeneration in zebrafish.

Rejuvenation Res. 2012 Jun;15(3):313-21. doi:10.1089/rej.2011.1246. Epub 2012 Apr 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Sensitivity of glycation and functional changes were compared between wild-type (WT) and the V156K mutant of apolipoprotein A-I in the reconstituted high-density lipoproteins (rHDL) state. WT-rHDL showed increased production of advanced glycated end (AGE) products with proteolytic fragmentation by fructose treatment (final 5 mM) for 48 hr; however, V156K-rHDL was more resistant to the same fructosylation and protein cleavage. Glycated WT-rHDL severely lost antioxidant activity; in contrast, V156K-rHDL showed much less AGE production and retained stronger antioxidant properties in the glycated state. In both native and glycated states, V156K-rHDL showed significantly enhanced stimulation activity for insulin secretion from the rat pancreatic β-cell, whereas WT-rHDL induced less insulin secretion by glycation. In the zebrafish model, under diabetic and hyperlipidemic diet conditions, injection of native V156K-rHDL caused an approximate five-fold increase in fin regeneration activity compared to native WT-rHDL over 120 hr. Under the same conditions, injection of glycated WT-rHDL caused severe tissue damage in tail fins after 48 hr, whereas glycated V156K-rHDL showed normal regeneration. In conclusion, insulin secretion and tissue rejuvenation activities of WT-rHDL were nearly depleted by fructosylation, but V156K-rHDL did not lose its beneficial activity. These results suggest that V156K-rHDL can be applied to facilitate facultative regeneration in aging-related complications.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读