例如:"lncRNA", "apoptosis", "WRKY"

Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins.

Neuroscience. 2012 Jun 28;213:1-18. Epub 2012 Apr 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


X-linked adrenoleukodystrophy (X-ALD) and pseudo neonatal adrenoleukodystrophy (P-NALD) are neurodegenerative demyelinating diseases resulting from the functional loss of the peroxisomal ATP-binding cassette transporter D (ABCD1) and from single peroxisomal enzyme deficiency (Acyl-CoA oxidase1: ACOX1), respectively. As these proteins are involved in the catabolism of very long chain fatty acids (VLCFA: C24:0, C26:0), X-ALD and P-NALD patients are characterized by the accumulation of VLCFA in plasma and tissues. Since peroxisomes are involved in the metabolism of reactive oxygen species and nitrogen species we examined the impact of VLCFA on the oxidative status of 158N murine oligodendrocytes expressing or not Abcd1 or Acox1. VLCFA triggers an oxidative stress characterized by an overproduction of and associated with lipid peroxidation, protein carbonylation, increased superoxide dismutase (SOD) activity, decreased catalase activity and glutathione level. SiRNA knockdown of Abcd1 or Acox1 increased duanyu1670 and duanyu1668 production even in the absence of VLCFA, and especially potentialized VLCFA-induced duanyu1670 overproduction. Moreover, mainly in cells with reduced Acox1 level, the levels of VLCFA and neutral lipids were strongly enhanced both in untreated and VLCFA - treated cells. Our data obtained on 158N murine oligodendrocytes highlight that VLCFA induce an oxidative stress, and demonstrate that Abcd1 or Acox1 knockdown contributes to disrupt RedOx equilibrium supporting a link between oxidative stress and the deficiency of Abcd1 or Acox1 peroxisomal proteins.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读