例如:"lncRNA", "apoptosis", "WRKY"

Arabidopsis ENDO2: its catalytic role and requirement of N-glycosylation for function.

J. Agric. Food Chem.2012 May 23;60(20):5169-79. doi:10.1021/jf300945c. Epub 2012 May 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The Arabidopsis thaliana At1g68290 gene encoding an endonuclease was isolated and designated ENDO2, which was cloned into a binary vector to overexpress ENDO2 with a C-terminal 6 × His-tag in A. thaliana. Our Arabidopsis transgenic lines harboring 35SP::ENDO2 produced stable active enzyme with high yield. The protein was affinity purified from transgenic plants, and its identity was confirmed by liquid chromatography-mass spectrometry and automatic Edman degradation. ENDO2 enzyme digests RNA, ssDNA, and dsDNA, with a substrate preference for ssDNA and RNA. The activity toward ssDNA (361.7 U/mg) is greater than its dsDNase activity (14.1 U/mg) at neutral pH. ENDO2 effectively cleaves mismatch regions in heteroduplex DNA containing single base pair mismatches or insertion/deletion bases and can be applied to high-throughput detection of single base mutation. Our data also validated that the removal of sugar groups from ENDO2 strongly affects its enzymatic stability and activity.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读