例如:"lncRNA", "apoptosis", "WRKY"

Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis.

Proc. Natl. Acad. Sci. U.S.A.2012 Mar 20;109(12):4678-83. Epub 2012 Mar 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Endoreduplication is the process where a cell replicates its genome without mitosis and cytokinesis, often followed by cell differentiation. This alternative cell cycle results in various levels of endoploidy, reaching 4× or higher one haploid set of chromosomes. Endoreduplication is found in animals and is widespread in plants, where it plays a major role in cellular differentiation and plant development. Here, we show that variation in endoreduplication between Arabidopsis thaliana accessions Columbia-0 and Kashmir is controlled by two major quantitative trait loci, ENDO-1 and ENDO-2. A local candidate gene association analysis in a set of 87 accessions, combined with expression analysis, identified CYCD5;1 as the most likely candidate gene underlying ENDO-2, operating as a rate-determining factor of endoreduplication. In accordance, both the overexpression and silencing of CYCD5;1 were effective in changing DNA ploidy levels, confirming CYCD5;1 to be a previously undescribed quantitative trait gene underlying endoreduplication in Arabidopsis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读