例如:"lncRNA", "apoptosis", "WRKY"

Exercise training enhances cardiac IGFI-R/PI3K/Akt and Bcl-2 family associated pro-survival pathways in streptozotocin-induced diabetic rats.

Int. J. Cardiol.2013 Jul 31;167(2):478-85. Epub 2012 Feb 17
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Increased myocyte apoptosis in diabetic hearts has been previously reported. The purpose of this study was to evaluate the effects of exercise training on cardiac survival pathways in streptozotocin (STZ)-induced diabetic rats. METHODS:Forty-eight male Wistar rats were randomly divided into control group (Control), STZ-induced (65 mg/kg, i.p.) diabetes (DM), and DM rats with moderate aerobic exercise training (DM-EX) on a treadmill 60 min/day, 5 days/week, for 10 weeks. Histopathological analysis, positive TUNEL assays and Western blotting were performed on the excised cardiac left ventricles from all three groups. RESULTS:The components of cardiac survival pathway (insulin-like growth factor I (IGFI), IGFI-receptor (IGFI-R), phosphatidylinositol 3'-kinase (PI3K), and Akt) and the pro-survival Bcl-2 family proteins (Bcl-2, Bcl-xL, and p-BAD) were all significantly decreased in the DM group compared with the Control group whereas they were increased in the DM-EX group. In addition, the abnormal myocardial architecture, enlarged interstitial space and increased cardiac TUNEL-positive apoptotic cells were observed in the DM group, but they were reduced in the DM-EX group. The apoptotic key component, caspase-3, was significantly increased in the DM group relative to the Control group whereas it was decreased in the DM-EX group. CONCLUSIONS:Exercise training enhances cardiac IGFI-R/PI3K/Akt and Bcl-2 family associated pro-survival pathways, which provides one of the new beneficial effects for exercise training in diabetes.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读