[No authors listed]
One of many physiological adjustments in quiescent cells is spatial regulation of specific proteins and RNA important for the entry to or exit from the stationary phase. By examining the localization of epigenetic-related proteins in Saccharomyces cerevisiae, we observed the formation of a reversible cytosolic "stationary-phase granule" (SPG) by Hos2, a nuclear histone deacetylase. In the stationary phase, hos2 mutants display reduced viability. Additionally, they exhibit a significant delay when recovering from stationary phase. Hos2 SPGs also contained Hst2, a Sir2 homologue, and several stress-related proteins, including Set3, Yca1, Hsp26, Hsp42, and some known components of stress granules. However, Hos2 SPG formation does not depend on the formation of stress granules or processing bodies. The absence or presence of glucose is sufficient to trigger assembly or disassembly of Hos2 SPGs. Among the identified components of Hos2 SPGs, Hsp42 is the first and last member observed in the Hos2 SPG assembly and disassembly processes. Hsp42 is also vital for the relocalization of the other components to Hos2 SPGs, suggesting that Hsp42 plays a central role in spatial regulation of proteins in quiescent cells.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |