例如:"lncRNA", "apoptosis", "WRKY"

Targeting of junctional adhesion molecule-C inhibits experimental choroidal neovascularization.

Invest. Ophthalmol. Vis. Sci.2012 Mar 21;53(3):1584-91
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:To identify the expression of junctional adhesion molecule-C (JAM-C) in choroidal neovascularization (CNV) and evaluate the effect of JAM-C targeting on CNV formation and on cellular functions relevant to CNV in vitro, such as macrophage transmigration, human retinal pigment epithelial (hRPE) cell migration, and monolayer RPE permeability. METHODS:JAM-C expression in CNV was analyzed by real-time PCR, immunoblot analysis, and immunofluorescence staining. CNV area and blood vessel leakage were quantified using isolectin B4 staining and fluorescein angiography, respectively, 1 week after laser treatment. Macrophage infiltration within the CNV area was measured by immunofluorescence, and transmigration through monolayer RPE was analyzed using a transepithelial migration assay. After JAM-C shRNA transfection, human RPE cell migration was quantified using a transwell assay, and monolayer RPE permeability was determined by measuring the apical-to-basolateral movements of sodium fluorescein. RESULTS:JAM-C expression was upregulated during CNV formation after laser treatment in a time-dependent manner. However, no change in JAM-C expression was found in the retina up to 14 days after laser treatment. JAM-C targeting by intravitreal injection of JAM-C Fc chimera inhibited CNV, blood vessel leakage, and macrophage infiltration. JAM-C Fc chimera inhibited basolateral-to-apical transmigration in vitro through a monolayer of hRPE of macrophages from patients with wet AMD. In addition, shRNA-mediated JAM-C knockdown inhibited hRPE cell migration and hRPE permeability. CONCLUSIONS:JAM-C blockade may prove useful for CNV suppression by inhibiting macrophage transmigration, RPE cell migration, and monolayer RPE barrier malfunction.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读