例如:"lncRNA", "apoptosis", "WRKY"

Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells.

Osteoporos Int. 2012 Oct;23(10):2435-45. doi:10.1007/s00198-011-1871-z. Epub 2012 Jan 12
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


UNLABELLED:In order to understand mechanisms involved in osteoporosis observed during iron overload diseases, we analyzed the impact of iron on a human osteoblast-like cell line. Iron exposure decreases osteoblast phenotype. HHIPL-2 is an iron-modulated gene which could contribute to these alterations. Our results suggest osteoblast impairment in iron-related osteoporosis. INTRODUCTION:Iron overload may cause osteoporosis. An iron-related decrease in osteoblast activity has been suggested. METHODS:We investigated the effect of iron exposure on human osteoblast cells (MG-63) by analyzing the impact of ferric ammonium citrate (FAC) and iron citrate (FeCi) on the expression of genes involved in iron metabolism or associated with osteoblast phenotype. A transcriptomic analysis was performed to identify iron-modulated genes. RESULTS:FAC and FeCi exposure modulated cellular iron status with a decrease in TFRC mRNA level and an increase in intracellular ferritin level. FAC increased level and caspase 3 activity. Ferroportin, HFE and TFR2 mRNAs were expressed in MG-63 cells under basal conditions. The level of ferroportin mRNA was increased by iron, whereas HFE mRNA level was decreased. The level of mRNA alpha 1 collagen type I chain, osteocalcin and the transcriptional factor RUNX2 were decreased by iron. Transcriptomic analysis revealed that the mRNA level of HedgeHog Interacting Protein Like-2 (HHIPL-2) gene, encoding an inhibitor of the hedgehog signaling pathway, was decreased in the presence of FAC. Specific inhibition of HHIPL-2 expression decreased osteoblast marker mRNA levels. Purmorphamine, hedgehog pathway activator, increased the mRNA level of GLI1, a target gene for the hedgehog pathway, and decreased osteoblast marker levels. GLI1 mRNA level was increased under iron exposure. CONCLUSION:We showed that in human MG-63 cells, iron exposure impacts iron metabolism and osteoblast gene expression. HHIPL-2 gene expression modulation may contribute to these alterations. Our results support a role of osteoblast impairment in iron-related osteoporosis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读