[No authors listed]
The presence of genes encoding organellar proteins in different cellular compartments necessitates a tight coordination of expression by the different genomes of the eukaryotic cell. This coordination of gene expression is achieved by organelle-to-nucleus or retrograde communication. Stress-induced perturbations of the tetrapyrrole pathway trigger large changes in nuclear gene expression in plants. Recently, we identified HSP90 proteins as ligands of the putative plastid signal Mg-ProtoIX. In order to investigate whether the interaction between HSP90 and Mg-ProtoIX is biologically relevant, we produced transgenic lines with reduced levels of cytosolic HSP90 in wild-type and gun5 backgrounds. Our work reveals that HSP90 proteins respond to the tetrapyrrole-mediated plastid signal to control expression of photosynthesis-associated nuclear genes (PhANG) during the response to oxidative stress. We also show that the hy5 mutant is insensitive to tetrapyrrole accumulation and that Mg-ProtoIX, cytosolic HSP90, and HY5 are all part of the same signaling pathway. These findings suggest that a regulatory complex controlling gene expression that includes HSP90 proteins and a transcription factor that is modified by tetrapyrroles in response to changes in the environment is evolutionarily conserved between yeast and plants.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |