[No authors listed]
AIMS/HYPOTHESIS:We have previously shown that the association of integrin-associated protein (IAP) with tyrosine phosphatase non-receptor type substrate-1 (SHPS-1) regulates the response of cells, including osteoclasts, osteoblasts, smooth muscle and retinal endothelial cells, to IGF-I. Here we sought to: (1) determine whether the regulation of IGF-I responsiveness by the association of IAP with SHPS-1 is a generalised response of endothelial cells; (2) identify the mechanism by which this association contributes to changes in endothelial cell responses to IGF-I; and (3) determine whether inhibition of this association alters pathophysiological changes occurring in vivo. METHODS:Endothelial cells were maintained in 5 mmol/l glucose and at hyperglycaemic levels, and exposed to an anti-IAP antibody that disrupts the association between IAP and SHPS-1. A rodent model of diabetes with endothelial cell dysfunction was used to investigate the role of the association of IAP with SHPS-1 in endothelial cell function in vivo. RESULTS:Endothelial cells maintained in 5 mmol/l glucose showed constitutive cleavage of the extracellular domain of IAP (which contains the SHPS-1 binding site), with no association between IAP and SHPS-1 being detected. In contrast, hyperglycaemia inhibited IAP cleavage, allowing IAP to associate with SHPS-1 and IGF-I to stimulate SHPS-1 tyrosine phosphorylation. Exposure to the anti-IAP antibody inhibited IGF-I-stimulated tube formation and increased permeability. In the rodent model, basal IAP-SHPS-1 association was not detected in retinal extracts from normal rats, but was fully restored in rats with diabetes. The anti-IAP antibody inhibited the association of IAP with SHPS-1, and reduced retinal vascular permeability and leucocyte adherence to levels similar to those in non-diabetic rats. The antibody also significantly inhibited the aberrant neovascularisation induced by hypoxia. CONCLUSIONS/INTERPRETATION:Our results demonstrate that the increased association of IAP with SHPS-1 contributes to the pathophysiological changes in the endothelium that are induced by hyperglycaemia and hypoxia.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |