例如:"lncRNA", "apoptosis", "WRKY"

Genome-wide and gene-based association implicates FRMD6 in Alzheimer disease.

Hum. Mutat.2012 Mar;33(3):521-9. doi:10.1002/humu.22009. Epub 2012 Jan 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Genome-wide association studies (GWAS) that allow for allelic heterogeneity may facilitate the discovery of novel genes not detectable by models that require replication of a single variant site. One strategy to accomplish this is to focus on genes rather than markers as units of association, and so potentially capture a spectrum of causal alleles that differ across populations. Here, we conducted a GWAS of Alzheimer disease (AD) in 2,586 Swedes and performed gene-based meta-analysis with three additional studies from France, Canada, and the United States, in total encompassing 4,259 cases and 8,284 controls. Implementing a newly designed gene-based algorithm, we identified two loci apart from the region around APOE that achieved study-wide significance in combined samples, the strongest finding being for FRMD6 on chromosome 14q (P = 2.6 × 10(-14)) and a weaker signal for NARS2 that is immediately adjacent to GAB2 on chromosome 11q (P = 7.8 × 10(-9)). Ontology-based pathway analyses revealed significant enrichment of genes involved in glycosylation. Results suggest that gene-based approaches that accommodate allelic heterogeneity in GWAS can provide a complementary avenue for gene discovery and may help to explain a portion of the missing heritability not detectable with single nucleotide polymorphisms (SNPs) derived from marker-specific meta-analysis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读