例如:"lncRNA", "apoptosis", "WRKY"

Topologically conserved residues direct heme transport in HRG-1-related proteins.

J Biol Chem. 2012 Feb 10;287(7):4914-24. Epub 2011 Dec 15
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Caenorhabditis elegans and human HRG-1-related proteins are conserved, membrane-bound permeases that bind and translocate heme in metazoan cells via a currently uncharacterized mechanism. Here, we show that cellular import of heme by HRG-1-related proteins from worms and humans requires strategically located amino acids that are topologically conserved across species. We exploit a heme synthesis-defective Saccharomyces cerevisiae mutant to model the heme auxotrophy of C. elegans and demonstrate that, under heme-deplete conditions, the endosomal CeHRG-1 requires both a specific histidine in the predicted second transmembrane domain (TMD2) and the FARKY motif in the C terminus tail for heme transport. By contrast, the plasma membrane CeHRG-4 transports heme by utilizing a histidine in the exoplasmic (E2) loop and the FARKY motif. Optimal activity under heme-limiting conditions, however, requires histidine in the E2 loop of CeHRG-1 and tyrosine in TMD2 of CeHRG-4. An analogous system exists in humans, because mutation of the synonymous histidine in TMD2 of hHRG-1 eliminates heme transport activity, implying an evolutionary conserved heme transport mechanism that predates vertebrate origins. Our results support a model in which heme is translocated across membranes facilitated by conserved amino acids positioned on the exoplasmic, cytoplasmic, and transmembrane regions of HRG-1-related proteins. These findings may provide a framework for understanding the structural basis of heme transport in eukaryotes and human parasites, which rely on host heme for survival.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读