[No authors listed]
The polarized distribution of neuronal proteins to axons and dendrites relies on microtubule-binding proteins such as CRMP, directed motors such as the kinesin UNC-104 (Kif1A) and diffusion barriers such as ankyrin. The causative relationships among these molecules are unknown. We show here that Caenorhabditis elegans CRMP (UNC-33) acts early in neuronal development, together with ankyrin (UNC-44), to organize microtubule asymmetry and axon-dendrite sorting. In unc-33 and unc-44 mutants, axonal proteins were mislocalized to dendrites and vice versa, suggesting bidirectional failures of axon-dendrite identity. unc-44 directed UNC-33 localization to axons, where it was enriched in a region that resembled the axon initial segment. unc-33 and unc-44 were both required to establish the asymmetric dynamics of axonal and dendritic microtubules; in their absence, microtubules were disorganized, the axonal kinesin UNC-104 invaded dendrites, and inappropriate UNC-104 activity randomized axonal protein sorting. We suggest that UNC-44 and UNC-33 direct polarized sorting through their global effects on neuronal microtubule organization.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |