例如:"lncRNA", "apoptosis", "WRKY"

Active-site mapping and site-specific mutagenesis of glycinamide ribonucleotide transformylase from Escherichia coli.

Biochemistry. 1990 Jul 17;29(28):6678-87. doi:10.1021/bi00480a018
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The affinity reagent N10-(bromoacetyl)-5,8-dideazafolate has previously been shown to inactivate glycinamide ribonucleotide transformylase (EC 2.1.2.2) from Escherichia coli in an active-site-directed manner with a 1:1 stoichiometry [Inglese et al. (1990) Biochemistry 29, 1436-1443]. After a series of mild proteolytic digestions, the dideazafolate label was localized to an active-site peptide attached by an ester linkage to the highly conserved residue Asp 144. Subsequent site-specific mutagenesis of Asp 144 to Asn 144 resulted in a catalytically inactive enzyme that retained the ability to bind substrates and inhibitors. The Asn 144 mutant could be further labeled with the affinity reagent in an active-site-directed stoichiometric fashion; however, the site of modification in this case was His 119. These results imply that Asp 144 may function as a general base within the catalytic center of the transformylase and is in close proximity to His 119 in the folded protein.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读