例如:"lncRNA", "apoptosis", "WRKY"

The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LHCB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings.

Plant J.2012 Mar;69(5):743-54. doi:10.1111/j.1365-313X.2011.04833.x. Epub 2011 Dec 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The process of chloroplast biogenesis requires a multitude of pathways and processes to establish chloroplast function. In cotyledons of seedlings, chloroplasts develop either directly from proplastids (also named eoplasts) or, if germinated in the dark, via etioplasts, whereas in leaves chloroplasts derive from proplastids in the apical meristem and are then multiplied by division. The snowy cotyledon 2, sco2, mutations specifically disrupt chloroplast biogenesis in cotyledons. SCO2 encodes a chloroplast-localized protein disulphide isomerase, hypothesized to be involved in protein folding. Analysis of co-expressed genes with SCO2 revealed that genes with similar expression patterns encode chloroplast proteins involved in protein translation and in chlorophyll biosynthesis. Indeed, sco2-1 accumulates increased levels of the chlorophyll precursor, protochlorophyllide, in both dark grown cotyledons and leaves. Yeast two-hybrid analyses demonstrated that SCO2 directly interacts with the chlorophyll-binding LHCB1 proteins, being confirmed in planta using bimolecular fluorescence complementation (BIFC). Furthermore, ultrastructural analysis of sco2-1 chloroplasts revealed that formation and movement of transport vesicles from the inner envelope to the thylakoids is perturbed. SCO2 does not interact with the signal recognition particle proteins SRP54 and FtsY, which were shown to be involved in targeting of LHCB1 to the thylakoids. We hypothesize that SCO2 provides an alternative targeting pathway for light-harvesting chlorophyll binding (LHCB) proteins to the thylakoids via transport vesicles predominantly in cotyledons, with the signal recognition particle (SRP) pathway predominant in rosette leaves. Therefore, we propose that SCO2 is involved in the integration of LHCB1 proteins into the thylakoids that feeds back on the regulation of the tetrapyrrole biosynthetic pathway and nuclear gene expression.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读