例如:"lncRNA", "apoptosis", "WRKY"

Coupling factor 6-induced activation of ecto-F1F(o) complex induces insulin resistance, mild glucose intolerance and elevated blood pressure in mice.

Diabetologia. 2012 Feb;55(2):520-9. doi:10.1007/s00125-011-2341-z. Epub 2011 Oct 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS/HYPOTHESIS:Despite advances in pharmacological treatments, diabetes with hypertension continues to be a major public health problem with high morbidity and mortality rates. We recently identified a circulating peptide coupling factor 6 (CF6), which binds to the plasma membrane ATP synthase (ecto-F(1)F(o) complex), resulting in intracellular acidosis. We investigated whether overexpression of CF6 contributes to diabetes and hypertension by intracellular acidosis. METHODS:Transgenic mice overexpressing CF6 (also known as ATP5J) were generated, and physiological, biochemical and molecular biology studies were performed. RESULTS:CF6 overexpression elicited a sustained decrease in intracellular pH in tissues (aorta, kidney, skeletal muscle and liver, with the exception of adipose tissue) that express its receptor, the β-subunit of ecto-F(1)F(o) complex. Consistent with the receptor distribution, phospho-insulin receptor β, phosphoinositide 3-kinase activity and the phospho-Akt1:total Akt1 ratio were all decreased in the skeletal muscle and the liver in transgenic compared with wild-type mice, resulting in a decrease of plasma membrane-bound GLUT4 and an increase in hepatic glucose production. Under a high-sucrose diet, transgenic mice had insulin resistance and mild glucose intolerance; under a high-salt diet, they had elevated blood pressure with increased renal RAS-related C3 botulinum substrate 1 (RAC1)-GTP, which is an activator of mineralocorticoid receptor. CONCLUSIONS/INTERPRETATION:Through its action on the β-subunit of ecto-F(1)F(o) complex, which results in intracellular acidosis, CF6 plays a crucial role in the development of insulin resistance and hypertension. This finding might advance our understanding of the mechanisms underlying diabetes and hypertension, possibly also providing a novel therapeutic target against cardiovascular disease.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读