例如:"lncRNA", "apoptosis", "WRKY"

Copper binding traps the folded state of the SCO protein from Bacillus subtilis.

Biochim. Biophys. Acta. 2012 Feb;1824(2):292-302. Epub 2011 Oct 19
Mark Lai 1 , Katherine C Yam , Diann Andrews , Bruce C Hill
Mark Lai 1 , Katherine C Yam , Diann Andrews , Bruce C Hill

[No authors listed]

Author information
  • 1 Department of Biochemistry, Queen's Universtiy, Kingston, ON, Canda.

摘要


The SCO protein from the aerobic bacterium Bacillus subtilis (BsSCO) is involved in the assembly of the cytochrome c oxidase complex, and specifically with the Cu(A) center. BsSCO has been proposed to play various roles in Cu(A) assembly including, the direct delivery of copper ions to the Cu(A) site, and/or maintaining the appropriate redox state of the cysteine ligands during formation of Cu(A). BsSCO binds copper in both Cu(II) and Cu(I) redox states, but has a million-fold higher affinity for Cu(II). As a prerequisite to kinetic studies, we measured equilibrium stability of oxidized, reduced and Cu(II)-bound BsSCO by chemical and thermal induced denaturation. Oxidized and reduced apo-BsSCO exhibit two-state behavior in both chemical- and thermal-induced unfolding. However, the Cu(II) complex of BsSCO is stable in up to nine molar urea. Thermal or guanidinium-induced unfolding of BsSCO-Cu(II) ensues only as the Cu(II) species is lost. The effect of copper (II) on the folding of BsSCO is complicated by a rapid redox reaction between copper and reduced, denatured BsSCO. When denatured apo-BsSCO is refolded in the presence of copper (II) some of the population is recovered as the BsSCO-Cu(II) complex and some is oxidized indicating that refolding and oxidation are competing processes. The proposed functional roles for BsSCO in vivo require that its cysteine residues are reduced and the presence of copper during folding may be detrimental to BsSCO attaining its functional state.

基因