例如:"lncRNA", "apoptosis", "WRKY"

Dual role of junctin in the regulation of ryanodine receptors and calcium release in cardiac ventricular myocytes.

J. Physiol. (Lond.). 2011 Dec 15;589(Pt 24):6063-80. Epub 2011 Oct 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Junctin, a 26 kDa intra-sarcoplasmic reticulum (SR) protein, forms a quaternary complex with triadin, calsequestrin and the ryanodine receptor (RyR) at the junctional SR membrane. The physiological role for junctin in the luminal regulation of RyR Ca(2+) release remains unresolved, but it appears to be essential for proper cardiac function since ablation of junctin results in increased ventricular automaticity. Given that the junctin levels are severely reduced in human failing hearts, we performed an in-depth study of the mechanisms affecting intracellular Ca(2+) homeostasis in junctin-deficient cardiomyocytes. In concurrence with sparks, JCN-KO cardiomyocytes display increased Ca(2+) transient amplitude, resulting from increased SR [Ca(2+)] ([Ca(2+)](SR)). Junctin ablation appears to affect how RyRs 'sense' SR Ca(2+) load, resulting in decreased diastolic SR Ca(2+) leak despite an elevated [Ca(2+)](SR). Surprisingly, the β-adrenergic enhancement of [Ca(2+)](SR) reverses the decrease in RyR activity and leads to spontaneous Ca(2+) release, evidenced by the development of spontaneous aftercontractions. Single channel recordings of RyRs from WT and JCN-KO cardiac SR indicate that the absence of junctin produces a dual effect on the normally linear response of RyRs to luminal [Ca(2+)]: at low luminal [Ca(2+)] (<1 mmol l(-1)), junctin-devoid RyR channels are less responsive to luminal [Ca(2+)]; conversely, high luminal [Ca(2+)] turns them hypersensitive to this form of channel modulation. Thus, junctin produces complex effects on Ca(2+) sparks, transients, and leak, but the luminal [Ca(2+)]-dependent dual response of junctin-devoid RyRs demonstrates that junctin normally acts as an activator of RyR channels at low luminal [Ca(2+)], and as an inhibitor at high luminal [Ca(2+)]. Because the crossover occurs at a [Ca(2+)](SR) that is close to that present in resting cells, it is possible that the activator-inhibitor role of junctin may be exerted under periods of prevalent parasympathetic and sympathetic activity, respectively.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读