例如:"lncRNA", "apoptosis", "WRKY"

Chronic high glucose downregulates mitochondrial calpain 10 and contributes to renal cell death and diabetes-induced renal injury.

Kidney Int.2012 Feb;81(4):391-400. Epub 2011 Oct 19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Whereas most calpains are cytosolic proteases, calpain 10 is resident in mitochondria and is important in mitochondrial homeostasis. Because calpain 10 has been implicated in type 2 diabetes, we studied its possible role in diabetes-induced renal dysfunction. We treated renal proximal tubular cells with high glucose (17 mmol/l) and found decreased mitochondrial calpain 10 mRNA and protein at 96 h compared with cells incubated with 0 or 5 mmol/l glucose or 17 mmol/l D-mannitol. High glucose increased mitochondrial calpain 10 substrates (NDUFB8 and ATP synthase β), decreased basal and uncoupled respiration, and initiated cell apoptosis as indicated by cleaved caspase 3 and nuclear condensation. Renal calpain 10 protein and mRNA were specifically decreased in streptozotocin-induced diabetic rats with kidney dysfunction, and in diabetic ob/ob mice. In agreement with our in vitro data, the kidneys of streptozotocin-induced diabetic rats had elevated calpain 10 substrates and cleaved caspase 3. Finally, specific siRNA-induced knockdown of calpain 10 in the proximal tubules of control rats resulted in decreased renal function as evidenced by increased serum creatinine, and increased caspase 3 cleavage compared with rats receiving scrambled siRNA. Thus, the glucose-induced loss of calpain 10 in vivo results in renal cell apoptosis and organ failure through accumulation of mitochondrial calpain 10 substrates and mitochondrial dysfunction. Whether this is a major cause of the decreased renal function in diabetic nephropathy will require further studies.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读